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Human PBMC scRNA-seq–based aging clocks reveal
ribosome to inflammation balance as a single-cell aging
hallmark and super longevity
Hongming Zhu1†, Jiawei Chen2†, Kangping Liu2†, Lei Gao1,3, Haiyan Wu1, Liangliang Ma4,
Jieru Zhou4, Zhongmin Liu1*, Jing-Dong J. Han2*

Quantifying aging rate is important for evaluating age-associated decline andmortality. A blood single-cell RNA
sequencing dataset for seven supercentenarians (SCs) was recently generated. Here, we generate a reference 28-
sample aging cohort to compute a single-cell level aging clock and to determine the biological age of SCs. Our
clock model placed the SCs at a blood biological age to between 80.43 and 102.67 years. Compared to the
model-expected aging trajectory, SCs display increased naive CD8+ T cells, decreased cytotoxic CD8+ T cells,
memory CD4+ T cells, and megakaryocytes. As the most prominent molecular hallmarks at the single-cell
level, SCs contain more cells and cell types with high ribosome level, which is associated with and, according
to Bayesian network inference, contributes to a low inflammation state and slow aging of SCs. Inhibiting ribo-
somal activity or translation in monocytes validates such translation against inflammation balance revealed by
our single-cell aging clock.
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INTRODUCTION
Aging is a complex process of functional decline of an organism,
which is accompanied by many degenerative diseases. Aging
clocks refer to linear or nonlinear models trained on omics data
to predict age and aging rate, which, measured by the difference
between chronological and predicted age (AgeDiff ), can be used
to quantify aging at different levels (1). For example, human periph-
eral blood transcriptome clocks have a mean absolute difference
(MAD) between chronological age and predicted age of 7.8 years
(2), while blood proteome–based prediction reaches a Pearson cor-
relation coefficient (PCC) between predicted and actual age of 0.93
to 0.97 (3), and DNA methylome has reached MAD of 4.9 years in
the whole blood (4) and 3.6 years in heterogeneous tissues (5). A
recent 50 blood cytokine–based immune aging clock has a MAD
of 15.2 years (6). We have established a three-dimensional human
facial image–based linear model with MAD of 6.1 years (7) and a
deep learning artificial intelligence (AI) model of 2.8 years (8).
Fast or slow agers (AgeDiff > MAD) display substantial aging-
related physiological decline or delay than well predicted individu-
als (2–7). However, how much of the heterogeneity in aging rate is
contributed by the heterogeneity at the single-cell level has not been
examined. Although a few single-cell RNA sequencing (scRNA-seq)
analyses comparing two points of age (young and old) have found
many age-related single-cell level changes in human and monkey
ovary (9, 10), and various tissues in mice (11–17), the two points

data cannot establish an age and aging rate predictor to assess the
aging rate or its heterogeneity at the single-cell level. Several single-
cell clocks have been developed in mice including multi-tissue
single-cell DNA methylation clocks (18) and brain single-cell
aging clocks (19). While 45-sample human peripheral blood mono-
nuclear cell (PBMC) scRNA-seq data across different ages are avail-
able (20), the quality and sparsity of the data do not allow reliable
separation of known cell types or clear mapping of cell identities, in
addition to the lack of precise age information.

A very small group of individuals, the supercentenarians (SCs),
>110 years old, not only achieve super longevity but also have a
disease-free healthy and active life even at very old age. Recently,
a precious blood scRNA-seq for 7 SCs was generated (21);
however, without a quantitative aging clock model, there is no
proper control or reference to decipher SCs’ cellular and molecular
features associated with their extreme longevity, as neither young
nor old samples can be rationally used for comparison. Specifically,
due to the lack of a natural aging cohort to establish single-cell aging
clock, it was not possible to examine what single-cell aging features
were delayed or reversed in these SCs, and what were the biological
ages of the SCs compared to the common single-cell aging trajecto-
ries, or what allow them move into a different aging trajectory. To
address these problems, here we generated a 17-sample human
PBMC scRNA-seq dataset from volunteers in Shanghai, China,
evenly distributed from age 28 to 77 years, which we termed the
Shanghai East Hospital natural aging cohort (or SE cohort for
short). On the basis of the cell type composition changes in SE
cohort and another cohort aged from 72 to 100 years (22), we
built a linear aging clock, then applied to SCs, and revealed the cel-
lular and molecular hallmarks deviating SCs’ actual age from the
model-predicted age at the single-cell and cell type level (Fig. 1A).
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Fig. 1. Single-cell RNA sequencing (scRNA-seq) landscape of human blood peripheral blood mononuclear cell (PBMC) during aging. (A) Study design and flow
chart of the human blood PBMC scRNA-seq aging clock analysis. The scRNA-seq data from SE, Chinese young cohort (CYCT), Wuhan cohort (WHCT), Japanese old cohort
(JOCT), and supercentenarian (SC) cohort are merged to classify cell types, and then cell type annotations are transferred to additional cohorts by TOSICA for further
analysis. The green bars show the age range of each cohort. (B) Two-dimensional uniformmanifold approximation and projection (UMAP) visualization of scRNA-seq data
from PBMCs of all cohorts. Each point is a cell; colors are based on subtype annotation defined by the Louvain clustering algorithm andmarker genes. (C) Expression levels
of significantly differentially expressed genes for eight major cell types. The color and size of each dot represent the expression level and cell fraction of the marker genes,
respectively. (D) Proportion of cell types shown in (C), in different cohorts. Cell type frequency is labeled in white text.
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RESULTS
scRNA-seq reveals cell type composition in aging cohorts
To build a single-cell transcriptome–based aging rate predictor, we
collected the PBMCs from 17 individuals (6 males and 11 females
with similar age distributions) from 28 to 77 years of age, which we
termed the Shanghai East Hospital natural aging cohort (or SE
cohort for short), and subjected them to 10X Genomics scRNA-
seq. For each individual, an average of 8545 cells were sequenced
and analyzed with an average of 110,364 reads per cell (Fig. 1A).
We processed these data together with published PBMC scRNA-
seq datasets for further analysis. These include two Chinese
cohorts, Chinese young cohort (CYCT) (23) and Wuhan cohort
(WHCT) (24), and two Japanese cohorts, Japanese old cohort
(JOCT) and SCs (21). Each of the cohorts contains five individuals.
After removing 25,111 cells due to poor quality (cells with >10%
mitochondrial gene expression or <200 genes detected), a total of
131,972 single cells (average of 7763 cells per sample) are retained
for the SE datasets and a total of 23,796 cells for CYCT, 45,923 cells
for WHCT, 19,252 cells for JOCT, and 38,417 cells for SC (fig. S1A).
We then removed batch effect between SE datasets and other inde-
pendent cohorts, and identified red blood cells (RBCs), megakaryo-
cytes (Mega), and six major immune cell lineages—CD4+ T cells
(TC), CD8+ T cells, natural killer cells (NK), monocytes (MC),
and dendritic cells (DC), based on the expression of canonical
lineage markers and cluster-specific marker genes, and visualized
them by Uniform Manifold Approximation and Projection
(UMAP) (Fig. 1B). The presence of cells from both SE datasets
and other independent datasets in each cluster demonstrates that
all clusters contained cells from multiple samples and thus are
not segregated due to dataset-specific batch effects (fig. S1B).

Immune cell subtypes are dissected by recluster
To separate immune cell subtypes, we separately reclustered the
cells of NK and TC lineage, BC lineage, and MC and DC lineage.
Using the most significantly up-regulated genes in each cluster,
we identified 29 cell subtypes in total. The CD4+ T cells were sub-
divided into five classes: CCR7high naive CD4+ T cells (CD4 Naive),
CCR7high NECTIN1high naive CD4+ T cells (CD4 Naive-
NECTIN1), CCR7med CCR6− memory CD4+ T cells (CD4 Tm),
CCR6+ effector memory CD4+ T cells (CD4 Tem), and FOXP3+

regulatory T cells (CD4 Treg) (Fig. 1B and fig. S1, C and D). The
CD8+ T cells were subdivided into four classes: CCR7+ naive
CD8+ T cells (CD8 Naive), GZMK+ effector memory CD8+ T
cells (CD8 Tem), GZMB+ GNLY+ cytotoxic CD8+ TCs (CD8
CTL), and DLG5high cytotoxic CD8+ TCs (CD8 CTL-DLG5)
(Fig. 1B and fig. S1, C and D). The NKs were subdivided into six
subtypes by the most significantly up-regulated genes in each
cluster (fig. S1C). In addition, we identified six major B cell
subsets: two groups of IL4R+ IGHD+ naive B cells (Naive B and
Naive B-NRGN); two groups of CD27+ IGHG1+ memory B cells
(Memory B-IL32 and Memory B-CRIP1); plasma cells or so-
called antibody-secreting cells, expressing high level of immuno-
globulin genes MZB1; and a subset of ITGAX+ B cells defined as
age-associated B cells (ABCs) (Fig. 1B and fig. S1, E and F). As
for myeloid cells (including MCs and DCs), we identified six tran-
scriptionally distinct subsets: CD14high CD16− classical monocytes
(CD14-MCs), CD14high CD16− PPBPhigh classical monocytes
(CD14-MC-PPBP), CD14+/− CD16high nonclassical monocytes

(CD16-MCs), CD14+ CD16+/− intermediate monocytes (In-
termed-MCs) (fig. S1, G and H), CD1c+ conventional DCs
(cDCs), and CLEC4C+ plasmacytoid DCs (pDCs) (fig. S1, G and
H). These subtypes of cells were then used for downstream analyses.

Cell type proportion-based clock models reveal SCs to be
much younger than their actual age
With increased age, various cell types change in proportions
(Fig. 2A). We therefore tested using cell type proportions of the
scRNA-seq data to build a “clock” to predict age. We first trained
a partial least square regression (PLSR) linear model and used
leave-one-out cross-validation (LOOCV) to assess the accuracy of
the model. To compare prediction power across models and to
prevent overfitting, all PLSR models in this study included only
the top three components. We then calculated variable importance
in projection (VIP) to rank the overall contribution of each variable
to the PLSR model, and the variables with VIP score > 1 are consid-
ered to be high explanatory variables (25). These include NK-
GZMH, CD8-CTL, CD8-Naive, CD4-Tm, CD4-Naive, Naive-B,
NK-FCER1G, CD14-MC, and Memory-B-CRIP1 contributing sig-
nificantly to the PLSR model (Fig. 2B). To extend the age spectrum
of training data, using TOSICA (26), we further mapped the cell
types of a published PBMC dataset generated by Guangdong
Medical University that contains very old (72 to 100 years)
samples (GM) (22) (fig. S2A) and trained a PLSR model. Although
the GM dataset contains frail and old control samples, frail samples
were reported to have elevated expression of the NEAT1 long non-
coding RNA (lncRNA) in a fraction of CD14 monocytes (22), which
are not a cell type contributing to our cell type composition–based
aging clocks, and we do not find that they differ significantly in cell
type compositions (fig. S2B) or in scRNA-seq clock-predicted cA-
geDiff (fig. S2C); therefore, we include both set of samples as ex-
panded training samples. On the basis of this extended dataset
(SE + GM), we find that the three-component PLSR model based
on only the top 7 cell types generates a model with PCC between
predicted and chronological age of 0.88 and MAD of 8.36
(Fig. 2C). Through saturation analysis, we find that the 28 reference
samples we used for clock building are sufficient to reach a stable
high accuracy (fig. S2D). We also used the cell type proportions
to train an elastic net (EN) regression linear model and used the
weight to rank the overall contribution of each variable to the EN
model (fig. S2E). The EN model based on the top 7 cell types had a
similarly accurate predictive power than PLSR model, with PCC and
MAD of 0.89 and 7.86, respectively, between predicted and chrono-
logical age in SE + GM cohorts (fig. S2F), whereas the accuracy of
PLSR model is more similar between training and independent
cohorts, suggestive of a slightly better generalizability. Five of the
top 7 cell types overlap between PLSR and EN model (fig. S2G),
hinting at their critical importance at age prediction by blood cell
type compositions.

To further validate our models, we tested them on blood scRNA-
seq data of three independent healthy cohorts, five CYCT individ-
uals with an age range from 29 to 58 years old, five WHCT individ-
uals from 37 to 71 years, and five JOCT individuals with an age
range from 50s to 80s (age accurate to decades instead of years;
thus, an error exceeding 5 years is expected by definition). Our
seven-cell type PLSR model had MAD of 10.06, 10.91, and 10.16
and PCC of 0.43, 0.69, and 0.28 to chronological agein these three
cohorts, respectively (fig. S2H). Similar MADs were found with the
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seven–cell type EN model (fig. S2I). When plotting the difference
between predicted and chronological age (AgeDiff ), we noticed
that there is a slight systemic underprediction (negative AgeDiff )
in old age and an overprediction (positive AgeDiff ) in young age
in our PLSR and EN models just as in other clock models (8);
thus, we further corrected this systemic bias using Loess model to
derive age-corrected AgeDiff (cAgeDiff ) as described previously (8)

(fig. S3A). After this correction, the MADs in independent control
cohorts are 7.95, 8.19, and 8.62 and PCC of 0.64, 0.85, and 0.57 to
chronological age. It should be noted that age correction does not
change MAD of the model but will enhance PCC to chronological
age. Since our single-cell aging clock is linear to age, we expect it to
have linear extensibility to extrapolate to either end of the age spec-
trum that is not included in the training data. More than 28 years

Fig. 2. Single-cell RNA sequencing (scRNA-
seq)–based single-cell composition aging clock
and age delay of supercentenarians (SCs). (A)
Spearman rank correlation coefficient (RCC) of age
to proportion of cell types with RCC > 0.25 across
all SE samples. (B) Variable importance in projec-
tion (VIP) values of cell types with VIP≥ 1 in partial
least square regression (PLSR) clock model. (C)
PLSR clock model trained and cross-validated on
cell type proportions in SE + Guangdong Medical
University (GM) samples. Each dot represents one
individual, colored by cohort. (D) Chronological
age and age-corrected PLSR (based on 28 SE + GM
samples) predicted age of independent cohorts.
Each dot represents one individual. (E) PLSR
(based on 28 SE + GM samples)–predicted age-
corrected difference between chronological and
predicted age (cAgeDiff) of individuals with mild
and severe COVID-19 compared to age-matched
healthy controls. Student’s t test P value is shown
on the top. (F) PLSR (based on 28 SE + GM
samples)–predicted cAgeDiff of COVID-19-posi-
tive patients at convalescence and progression
stages. (G) PLSR (based on 28 SE + GM samples)–
predicted cAgeDiff of systemic lupus erythema-
tosus (SLE) patients of managed, flare, and treated
states compared with age-matched healthy con-
trols. Each point represents one individual, and
the error bar represents mean and SD. Student’s t
test P values are shown on the top. (H) Anti-cor-
relation between the proportions of CD8-CTL and
CD8-Naive cells in CD8+ T cells across SE + GM and
SC samples. Pearson’s correlation coefficient and P
value are shown.
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younger than the youngest training sample, TOSICA-mapped um-
bilical cord blood samples (Cord) are predicted by our clock model
to be −10.10 to −5.42 years old (Fig. 2D). Toward the other end of
the age spectrum, SCs who are 20 years older than the oldest train-
ing sample are predicted to be 80.43 to 102.67 years old, on average
18.64 years younger than their chronological age. The age-corrected
cell type EN model placed all SCs to below 110, as young as the
average of 95.23 years old, and umbilical cord blood (Cord) to
7.12 to 12.68 years old (fig. S3B). We further confirmed that the
age-corrected clock was not affected by batch-related factors, such
as sex, datasets, and cell numbers (fig. S3, C to E).

To further test clock performance, we applied our age clocks to
other independent disease datasets including a COVID-19 dataset
and a systemic lupus erythematosus (SLE) dataset (fig. S2A). Our
cell type composition–based PLSR model reveals a higher average
biological age of individuals in disease states than age-matched con-
trols as shown by cAgeDiff, which increases with the disease severity
(Fig. 2, E to G). Perhaps due to the small sample size, only severe
symptom COVID-19 patients are significantly older (Fig. 2E; t test,
P = 0.040) and SLE symptoms managed and flare patients are highly
significantly older than controls (Fig. 2G; t test, P = 8.77 × 10−4 and
4.20 × 10−3). cAgeDiff predicted by the EN models shows a consis-
tent significant increase in diseases versus controls (fig. S3, F to H).
These suggest that both the PLSR and EN cell type composition
clock models can identify the increase in immune-related biological
age of patients with these diseases.

Consistent with the model-predicted “slow aging” of the SCs
(Fig. 2D and fig. S2H), among the seven cell types used in the
PLSR and those in EN models, a total of nine cell types (fig.
S2G), a highly significant negative correlation exists between two
CD8+ T subtypes, CD8+ CTL and CD8+ naive T cells, which signifi-
cantly increase and decrease with age, respectively, in both SE + GM
and SC cohorts, but SCs largely overlap with the 70- to 100-year-old
SE + GMs (Fig. 2H). This suggests that the polarization of CD8+

naive T toward CD8+ CTL is an aging hallmark at the blood cell
population level.

Age-related cell composition changes are delayed in SCs
Now that we have natural aging cohort-derived clock models,
instead of artificially using any particular age group as controls,
we use the cellular and molecular deviation of model-predicted
versus their actual status in SCs to decipher features associated
with their extreme longevity (Fig. 3A). We reverse-calculated the
cell type compositions at age 110 years by PLSR clock models (Ma-
terials and Methods). Alternatively, based on the top 7 cell types in
the PLSR and EN clock models (Fig. 2E), we defined the cell types
whose proportions are significantly positively or negatively correlat-
ed with age by linear regression model (LR) (with RCC to age slope,
P < 0.05), without age-related systemic bias (fig. S4A). Then, the ex-
pected cell proportions at age 110 are calculated based on the PLSR
model or the LR model, and if they are significantly higher or lower
than the real proportions in SCs (z score, P < 0.05), the cell types are
considered as “SC delayed age-up cell types” or “SC delayed age-
down cell types” (Fig. 3A). We find that SCs show significantly
delayed age-dependent decrease in CD8+ naive T cells, Naive B
cells, Memory-B, and NK-GZMK (z score, P < 0.05), marginally sig-
nificantly delayed age-dependent increase in CD4+ Tm (z score, P <
0.1) compared to the PLSR model (fig. S4B), and delayed age-de-
pendent decrease in CD8+ naive T cells and delayed age-dependent

increase in CD4+ Tm and Naive B compared to the LR model (fig.
S4C). In addition, the frequencies of cell types that contribute to the
aging clocks and are delayed in SCs show no differences between the
predicted values and real values of individuals from both training
and independent cohorts, except in Cord and SC cohorts (fig. S4,
D and E). When the proportions of age down-regulated CD8-
Naive cells and age up-regulated CD4 Tm cells are plotted across
age, there are clear delayed deviations of SCs from the linear
trend line over the 28 samples of 28 to 100 years (fig. S4F).

Age-related single-cell gene expression changes are
delayed in SCs
We used the sum of gene expressions of all cells belonging to each
individual to train PLSR models as pseudo-bulk transcriptome
clock model, which predicts the 28 training samples at MAD of
5.04 and PCC of 0.97 to chronological age (Fig. 3B) and predicts
SCs to a mean age of 82.49 years (fig. S4G). We used the sum of
gene expressions of all cells belonging to each cell type for each in-
dividual to train PLSR models as the pseudo-bulk transcriptome
clock for the cell type separately with MAD from 4.80 (ABC) to
9.60 (Plasma) years (Fig. 3C). These clocks, more dramatically
than the cell type proportion-based clocks, predicted the SC
median transcriptome ages to 51.62 to 63.19 years before age cor-
rection (fig. S4H) to 65.01 to 75.83 after age correction (Fig. 3C).
Then, based on these PLSR clock models, or alternatively defining
top contributing genes with VIP > 1 (table S1) as age-related, and
predicted their expression levels at 110 using LR models in each cell
type, we then defined “SC delayed age-up genes” (up-regulated with
age and delayed in SCs) and “SC delayed age-down genes” (down-
regulated with age and delayed in SCs) similar to cell type analysis
described above (Fig. 3A). Using the LR models, which show no sys-
tematic bias against age (fig. S5, A and B, and table S2), we find 2749
and 495 age-up and age-down genes, respectively (table S3), and
1023 age-up and 149 age-down genes significantly delayed in SCs.
As validation of the model, we find no significant differences
between real and predicted gene expressions of genes that contrib-
ute to the aging clocks and are delayed in SCs in the training cohort,
as well as in other independent cohorts, except in SC cohorts (fig.
S5C). Transcription factor (TF) target enrichment analysis shows
that age-up and age-down genes are enriched for targets of
FOXR2, ZNF318, PSMB5, PER1, ZZZ3, and NERF (fig. S5, D and
F). Among them, FOXR2, ZNF318, PSMB5, and ZZZ3 targets are
enriched in SC delayed age-down genes and nuclear factor κB
(NFκB) targets are enriched in SC delayed age-up genes (fig. S5, F
and G). Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses reveal that age-up genes enrich for
NFκB/ tumor necrosis factor (TNF)/TLR/NOD/FoxO signaling
pathway, virus infection, apoptosis, T cell receptor signaling
pathway, cytokine, and PD-1 pathway (fig. S6, A and B), and
among them, NFκB/TNF/TLR/NOD/FoxO signaling pathway,
virus infection, apoptosis, cytokine, and mitogen-activated
protein kinase (MAPK) pathway are significantly delayed in SCs
(Fig. 3D), while age-down genes most commonly enrich for ribo-
some genes (fig. S6, C and D), which are significantly delayed in
most cell types of SCs (Fig. 3E and table S4).

Compared to the PLSR model–expected values, there are 111
age-up genes significantly delayed in the SCs, which are related to
MAPK signaling pathway, rapamycin (mTOR) signaling pathway,
NFκB signaling pathway, and virus infection (fig. S6E), whereas
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Fig. 3. Aging-related cell type proportion and gene expression changes delayed in supercentenarians (SCs). (A) Illustration of the identification and definition of SC
delayed age-related changes in cell type proportions and gene expressions. (B) Partial least square regression (PLSR) age predictor-trained and cross-validated on pseu-
dobulk transcriptome in SE + GM samples. Each dot represents one individual, colored by cohort. (C) Age-corrected PLSR model-predicted age of each SC sample based
on the pooled gene expression in each cell type. The maximum and minimum predicted ages of each SC are marked in white and black, respectively. (D and E) Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways enriched in SC delayed age-up and delayed age-down genes in different cell types according to linear regression
model (LR) model-predicted gene expression in SCs (Fisher test FDR < 0.01 scaled according to the legend). (F) Circos plot showing the top 150 interactions mediated by
ligand-receptor pairs between cell types significantly changed with age Pearson correlation coefficient (PCC) P < 0.05. The outer ring displays color-coded cell types
according to Fig. 1B, and the inner ring represents the ligand-receptor interacting pairs. The line width and arrow width are proportional to t test FDR. Colors of edges
indicate the changes with age: blue, age-down; red, age-up. (G) Circos plot of the SC delayed age-up or age-down interactions between cell types. Blue, SC delayed age-
up; red, SC delayed age-down.
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1261 age-down genes are significantly delayed in SCs. Again, ribo-
some- and translation-related genes are enriched in most cell types
at the very top of the list (fig. S6F). The delay of these ribosome
genes decline in SCs cannot be attributed to batch effect in gene ex-
pression because, as a group, average ribosome gene expressions in
each cell type do not differ among different cohorts [analysis of var-
iance (ANOVA), P = 0.53; fig. S7A], while the age down-regulated
ribosome genes identified in SEs also decrease with age in other
cohorts (fig. S7B).

Inflammatory cell-cell interactions are repressed in SCs
Altered intercellular communication is an integrative hallmark of
aging (27). On the basis of annotated ligand-receptor databases,
we calculated the numbers of ligand-receptor pairs in every pair
of cell types using CellphoneDB (28). We found that many age-
related receptor-ligand pairs are up-regulated during aging among
various cell types (PCC, P < 0.05). These pairs are mostly related to
inflammation, cytokines, and antigen presentation (Fig. 3F). Similar
to delayed age-up and age-down cell types and genes, we defined
delayed age-up and age-down ligand-receptor pairs in SCs. The
age-related down-regulated aMb2 integrin signaling ligand-recep-
tor pairs are generally delayed in SCs for most cell types, and age-
up inflammation-related TNF signaling ligand-receptor pairs are
also delayed, especially in pDC (Fig. 3G).

Ribosome/translation counteracts inflammation at single-
cell level
On the basis of the above results, we wondered whether age-related
decline in ribosome levels and age-related increase of inflammation
levels are two linked events of the single-cell aging. To quantitatively
assess the inflammatory state of each cell, we calculated the inflam-
matory score for each cell based on inflammatory-related gene list
(table S5) as described previously (29). The median expression
levels of ribosome genes are used to indicate the level of ribosomes
in each cell. In both SE and SC cohort, there is a significant negative
correlation (PCC = −0.22, P < 2.2 × 10−16 in SE, PCC = −0.23, P <
2.2 × 10−16 in SC, PCC = −0.30, P < 2.2 × 10−16 combined) between
ribosome level and inflammation score across all single cells of all
cell types (Fig. 4A). Furthermore, across different cell types, there is
also a significant negative correlation between the average ribosome
levels and average inflammation scores (RCC = −0.58, P = 0.0021 in
SE, RCC = −0.59, P = 0.0020 in SC, RCC = −0.58, P = 1.0 × 10−5

combined) (Fig. 4B). On the basis of this ribosome level versus in-
flammation score distribution, cell types can be separated into high-
inflammatory and low-ribosome (HI-LR) cell types, which include
Intermed-MC, CD14-MC, CD16-MC, CD14-MC-PPBP, and
megakaryocytes, and low-inflammatory and high-ribosome (LI-
HR) cell types, which are the rest of the cell types (Fig. 4B). In all
but one cell type, the total ribosome gene expression level decreases
with age in SEs, whereas in HI-LR cell types, SCs show a similar level
to young SEs (Fig. 4C). Consistently, principal components analysis
(PCA) analysis based on ribosomal and inflammatory gene expres-
sions in each single cell within the same cell type shows that for most
cell types, for example, CD4-Treg and CD14-MC, single cells fall
into two major cellular states, corresponding to high and low ribo-
some expression, respectively (fig. S8A). Consistent with the ribo-
some expression level, the proportion of cells in the high ribosome
state decreases with age for most cell types (RCC to age range from
−0.64 to 0.43 with a median of −0.23; Fig. 4D and table S6).

Remarkably, SCs consistently have more cells in the high ribosome
state than SE in the HI-LR cell types (Fig. 4D). These indicate that
HI-LR cell types’ high ribosome expression, or more precisely more
cells in high ribosome state, is a common feature of super longevity
at the single-cell level in the blood.

We also validated the changes of ribosome expression and in-
flammation scores in COVID-19 and SLE cohorts. Consistent
with the balance between ribosome expression and inflammation,
with the disease progression in COVID-19 and SLE, the inflamma-
tory score consistently increased and the expression level of ribo-
somes decreased in all cell types and HI-LR cells, with the
changes generally more pronounced in SLE than in COVID-19
(fig. S9).

Furthermore, we find significantly different cell-cell communi-
cation between cells in the high ribosome versus in the low ribo-
some within most cell types (Fig. 4E). In the low-ribosome state,
the top 100 ligand-receptor pairs are mostly between CD8-CTL
and the rest of the cell types, including MHCII, S100A8/A9-
TLR4, CCL5-CCR5, and TNF-related pairs, while these are all sig-
nificantly lower in high-ribosome state (t test, P < 0.01; Fig. 4E and
fig. S8B). The most commonly down-regulated ligand-receptor pair
in high versus low ribosome state is the interaction between ribo-
somal protein S19 (RPS19) and its membrane receptor C5AR1
(fig. S8B), which has been reported to suppress immune re-
sponse (30).

Finally, to understand the causal relationships among ribosome
level, inflammation level, age, and aging rate in SE + GM data, we
inferred a Bayesian network (BN) based on all single cells in HI-LR
and LI-HR cell types, respectively, in the aging rate reference SE +
GM data. Here, aging rate is measured by age-corrected AgeDiff,
which is the difference between the predicted age and the chrono-
logical age based on the cell composition PLSR model and corrected
by age. The BN model infers that AgeDiff is dependent on the level
of ribosome and inflammation in the HI-LR cell types, and the level
of ribosome is in turn dependent on age. The model also infers that
a decrease in ribosome level increases in the level of inflammation in
the HI-LR cells. This is not the case in LI-HR cell types, where age
decreases inflammation score, and inflammation score does not
contribute to aging rate (Fig. 4F). These suggest that ribosome
abundance, which is often a surrogate of translation and growth
rate, may suppress the inflammatory cytokine secretion of the HI-
LR cells; in other words, high level of inflammatory cytokine expres-
sion might be a consequence of stagnant growth or insufficient
basally low ribosomal activities of the HI-LR cell types, and that
SCs might benefit from the high cellular ribosome/translation/
growth rate to counteract aging-induced chronic inflammation. In
contrast, rather than inducing an inflammatory state, the basally
low-level inflammatory cytokines might be a consequence of the
normal growth of the LI-HR cells (Fig. 4F). Similar relationships
can be consistently observed in BN models inferred for each cell
type, and based on the interactions in these BNs, the HI-LR cell
types automatically aggregate together and segregate from other
cell types by unsupervised hierarchical clustering (Fig. 4G).

Finally, to confirm the inferred suppression of inflammation by
ribosomal activity (translation) in HI-LR cells, we temporally inhib-
ited translation using a translation inhibitor cycloheximide (CHX),
which binds to the 60S ribosomal unit and inhibits translation elon-
gation (31), in human blood primary monocyte cells and THP-1
monocyte cell line, which represents a HI-LR cell type and was
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Fig. 4. Relationship between ribosome and inflammation across single cells and cell types during aging. (A) Dot plot of ribosome gene expression levels and
inflammatory score for each cell in SE and supercentenarian (SC) cohorts. Combined Pearson correlation coefficient (PCC) and P value in SE and SC are labeled. (B) Dot plot
of average ribosome gene expression levels against inflammatory score for all cell types. Combined rank correlation coefficient (RCC) and P value in SE and SC are labeled.
(C) Heatmap of the total ribosome gene expression level in each cell type of each individual. Rank correlation coefficients (RCCs) with age in 28 SE + Guangdong Medical
University (GM) samples and t test P value between SC and predicted value are shown on the right. (D) Heatmap of the high ribosome state frequency in each cell type.
RCCs with age and t test P value between SC and SE are shown on the right. The significant RCCs are labeled by *. The maximum, median, and minimum RCCs are marked
in white, gray, and black, respectively. (E) Circos plot of the down-regulated interactions in high versus low ribosome state (t test, P < 0.001). (F) Bayesian networks inferred
among the four factors in HL-LR cell types and LI-HR cell types in 28 SE + GM samples. A directed edge denotes that the occurrence of the target node is dependent on
that of the source node. (G) Heatmap of the correlation between inflammation score, ribosome levels, age, and age-corrected difference between chronological and
predicted age (cAgeDiff) in each cell type of 28 SE + GM samples. Themean level of inflammation and ribosome is labeled on the right. (H) Quantitative polymerase chain
reaction (PCR) shows the transcript changes of IL-6 and IL-8 in primarymonocyte cells treatedwith vehicle and cycloheximide (CHX) (100 μg/ml) at various time points. **P
< 0.01; ***P < 0.001 (t test). (I) Schematic summary of the ribosome and inflammation balance as a hallmark of blood single-cell aging and delayed aging in SCs.
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found to secrete senescence-associated cytokines in our previous
study (32). As expected from the BN model, inhibiting translation
caused a significant up-regulation of commonly observed inflam-
matory cytokines, interleukin-6 (IL-6) and IL-8, in a time-depen-
dent manner in primary monocyte cells (Fig. 4H) and THP-1
(fig. S8C).

DISCUSSION
Together, by generating a reference 28-sample aging cohort, we de-
veloped single-cell level single-cell aging clocks based on single-cell
type compositions of our reference 17-individual aging cohort, and
placed the SCs at a biological age between 80.43 and 102.67 years
(Fig. 2D and fig. S2H). Among the independent validation
cohorts, both the Chinese WHCT and CYCT and Japanese JOCT
are well aligned to their actual ages. Although the single-cell aging
clocks we constructed have already reached saturation within the
framework of linear models, a larger size of training data, in the
hundreds or even thousands, may further enable building AI
models to further increase accuracy. Furthermore, we generated
single-cell type transcriptome clocks for each cell type and placed
SCs to an even younger cross cell type median transcriptome age
range of 65.01 to 75.83 years (Fig. 3C), much younger than their
chronological ages. This also suggests a stronger slow aging of
SCs at the single-cell transcriptome level than at the cell type com-
position level. It should be noted that all the age predictors we used
(PLSR and EN) are linear models. Therefore, the existing models are
sufficient to capture the linear age-related changes without neces-
sarily the full age range. It is based on only these linear models
we find the SCs have a significantly slower aging rate compared
with expected linear changes during natural aging. In the future,
it would be interesting to investigate the nonlinear changes
during aging and in SCs, which will entail more samples from all
age ranges for building nonlinear models. It would also be interest-
ing to test the clock on progeroid diseases like Hutchinson-Gilford
progeria syndrome.

To identify the cell types and molecular events underlying the
slow aging of SCs, we used the clock models to generate the age-
matched expected profiles for the SCs and then compared them
to the real values in SCs in terms of cell types and molecular fea-
tures. We found that, at the cell type level, SCs display an increase
in naive CD8+ T cells, together with a decrease in cytotoxic CD8+ T
cells and memory CD4+ T cells. At the single-cell level in the HI-LR
cell types, SCs contain more cells with high ribosome level, which is
strongly negatively associated to the expression of inflammatory cy-
tokine genes. Using a BN inference model, we inferred that high ri-
bosome gene expression levels potentially contribute to a low
inflammation state and delayed aging or slow aging of SCs in HI-
LR cell types. Such a causal relationship was observed in cultured
monocytes experimentally inhibiting ribosomal activity or transla-
tion induced the expression of inflammatory cytokines, such as IL-6
and IL-8. A recent study has found that these cytokines, generated
by macrophages (tissue-infiltrated monocytes) if not rapidly damp-
ened, can recruit cytotoxic CD8+ T cells (33), which initiate killing
of the senescent cells. It would be interesting to see whether the
reduced level of cytotoxic CD8+ T cells in SCs could be a further
consequence of reduced inflammatory cytokine expression in the
HI-LR cell types.

Ribosomopathy in humans results in Diamond Blackfan syn-
drome, which encompasses many age-related degenerative symp-
toms, including glaucoma and cataracts, at least through the G0-
G1 cell cycle arrest (34). In yeast, ribosomal mutations result in
shortened replicative life span (35). In contrast, improving transla-
tion efficiency by specific ribosome variant increases life span in
multiple species (36). Our previous study has found ribosome
gene expression being the most significant pathway positively cor-
related with life spans among mice subjected to different lifestyles
(37). Here, we identified that single-cell ribosomal gene expression
levels decrease with age in nearly all cell types and are significantly
delayed in the HI-LR cell types in SCs (Fig. 4D). We also found that
in the HI-LR cells, a further decrease in their basally low ribosomal
gene expression could lead to enhanced inflammatory cytokine ex-
pression. Since ribosomal levels are a robust measure of growth rate
for single cells (33, 38) and enhanced inflammatory cytokine is a
senescence-associated secretory phenotype (SASP) (39) accelerating
aging rates in human (8), the high proportion of cells in high ribo-
some states of the HI-LR cell types in the blood from SCs and the
ribosome/translation against inflammation balance identified by
our single-cell aging clocks reveal an unexpected aging hallmark
at the single-cell level and fuel the philosophical assertation
“When you are not growing, you are not living.”

MATERIALS AND METHODS
Ethics approval and participant consent
Human peripheral blood samples were collected from Shanghai
East Hospital with informed consent and were approved by the hos-
pital ethics committee in accordance with the Helsinki Declaration
(registered number of approval: 2019.032).

Human blood sample collection and storage
Peripheral venous blood samples were collected at the Shanghai East
Hospital Health Peer Center. Clinical parameters and medical his-
tories were available for all volunteers. All volunteers were evaluated
as generally healthy at the time of blood collection based on evalu-
ation of their medical history and assessment of their vital signs. In
our present study, 17 healthy volunteers were enrolled in
scRNA-seq.

Isolation of PBMCs and monocyte
PBMCs were isolated from human peripheral blood samples as pre-
viously described (40). In brief, 5 ml of fresh peripheral blood was
drawn per individual, mixed with 5 ml of phosphate-buffered saline
(PBS), and then gently layered over 5 ml of Ficoll (GIBCO, USA) in
a Falcon tube. Samples were centrifuged at 400g for 30 min without
brake. After centrifugation, PBMCs in the white layer were carefully
transferred to a new tube. After being washed with PBS twice,
samples were then centrifuged at 400g for 10 min, and the pellets
were resuspended with cryopreservation medium [1 ml of fetal
bovine serum supplemented with 120 μl of dimethyl sulfoxide
(DMSO)] for long-term storage in liquid nitrogen.

Human peripheral blood primary monocytes were isolated using
the EasySep Human Monocyte Isolation Kit (STEMCELL Technol-
ogies, USA). PBMCs (5 × 107) were resuspended in 2 ml of isolation
buffer (PBS containing 2% fetal bovine serum, 1 mM EDTA). Cells
were incubated with 100 μl of isolation cocktail for 10 min under
4°C, and then 100 μl of magnetic particles was added, top up to
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2.5 ml with isolation buffer, and incubated for 2.5 min at room tem-
perature. Finally, the enriched cell suspension was harvested and
centrifuged at 400g for 10 min.

10X genomics scRNA-seq library preparation
To perform scRNA-seq, thawed PBMCs were captured using the
10X Chromium System (10X Genomics, USA) according to the
manufacturer’s protocol. Cells were loaded onto the Chromium
Controller Instrument to generate gel bead-in-emulsions (GEM).
Afterward, barcoding and complementary DNA (cDNA) libraries
were prepared using the Single-Cell 3′ Library and Gel Bead Kit
(catalog no. 120237, 10X Genomics). GEM–reverse transcription
(RT) was performed in a Mastercycler Nexus Thermal cycler (Ep-
pendorf), and then GEMs were broken. cDNAwas cleaned up with
Dynabeads MyOne Silane Beads (Thermo Fisher Scientific, USA)
and amplified. Amplified cDNA product was then cleaned up
using the SPRIselect Reagent Kit (0.6× SPRI, Beckman Coulter).
Indexed sequencing libraries were constructed using the Chromium
Single-Cell 3′ Library Kit and subsequently sequenced using Illumi-
na HiSeq PE150 at Novogene (Beijing, China) with average se-
quencing depth of >15 million reads per cell.

scRNA-seq data processing
Reads for each gene from the 17 scRNA-seq samples were quanti-
fied using the Cell Ranger Single-Cell Software Suite (version 3.0.0,
10X Genomics) against the GRCh38 human reference genome. In-
dependent health cohorts of Chinesewere downloaded from Beijing
Institute of Genomics (BIG) Data Center: CYCT (41), HRA000150;
WHCT (24), HRA000069. JOCT dataset was obtained from the
authors of the original publication, and the SC dataset was down-
loaded from https://humandbs.biosciencedbc.jp/en/hum0229-
v1 (21).

SCANPY (42) (single-cell analysis python toolkit, version 1.7.1)
was used to read a combined gene-barcode matrix of these samples.
Quality of cells was assessed based on three metrics step by step: (i)
Genes expressed in <3 cells were removed. (ii) Cells with <200 or
>5000 genes detected were removed. (iii) Cells with >15% mito-
chondrial gene counts were removed.

Batch effect correction and cell subtype annotations
To integrate cells into a shared space from different datasets for un-
supervised clustering, we used the harmony algorithm to do batch
effect correction (43). First, total count matrix was normalized by
library size correction using default size factor 10,000. Highly vari-
able genes (HVGs) were calculated by function pp.highly_varia-
ble_genes with default parameters. All ribosomal and
mitochondrial genes were then removed from the list, which were
identified as input to perform PCA analysis. Then, this PCA matrix
was fed into pp.harmony-integrate function with default parame-
ters, in which each sample was set as different batch. The resulting
batch-corrected matrix was used to build nearest neighbor graph.
Such nearest neighbor graph was then used to find clusters by
Louvain algorithm with parameter “resolution” = 0.9 to identify
the cell clusters. The cluster-specific marker genes were identified
using the rank_genes_groups function by Wilcoxon rank-sum
test. The top-ranked genes from the respective test statistic are re-
garded as marker genes. We annotated the clusters into eight major
cell types based on the known marker genes. For gene expression

analysis, Combat (44) parametric adjustments were used for batch
effect correction.

To identify subclusters within each major cell type, we per-
formed a second round of clustering on T/NK, B, and myeloid
cells separately. The procedure of the second round of clustering
is the same as the first round on the HVGs chosen as described
above, with resolution ranging from 0.1 to 0.9. Annotation of the
resulting clusters to cell types was based on the known markers
and top highly expressed genes compared with other cells.

Clock model generation
Partial least-squares regression (PLSR) clock model based on cell
type compositions was established using the “plsr ’ R packages
with only the first three PLSR components to avoid overfitting.
The leave-one-out (LOO) method (predictors were trained using
all but one samples and then used to predict the age of the left-
out samples) was applied to obtain the predicted age of each
sample. Variable Influence on Projection (VIP) is a weighted sum
of squares of the PLSR loadings that takes into account the amount
of explained Y variance of each component. VIP scores give infor-
mation about how the variables combine to form the quantitative
relation between X and Y, thereby providing a better assessment
of their relative importance in the model, and a VIP score ≥ 1.0
is considered as highly influential (45). VIP scores are calculated
with the formula defined by Chong and Jun (46).

EN clock model was trained on all subtype compositions of 28
SE + GM samples with α = 5 × 10−4 and L1 ratio = 0.08. Then, the
cell types with high weight (|weight| > 50) in the model were con-
sidered to be important for age prediction.

We used the sum of gene expressions of all cells belonging to
each cell type for each individual to train PLSR models as the
pseudo-bulk transcriptome clock for the cell type.

Saturation analysis
To test the sufficiency of our sample size, we conducted a saturation
analysis. We randomly selected one sample at a time to add to the
training dataset, ranging from 5 to 28 samples. For each point, we
repeated the process 100 times and calculated the average MAD
and PCC.

Cell type annotation transfer by TOSICA
To transfer cell type annotations on additional datasets including
GM old samples and Cord samples (GSE157007), COVID-19
(GSE158055), and SLE (GSE174188), we used the cell type annota-
tion transfer tool TOSICA that we recently developed (26), which
can achieve interpretable, accurate, and batch immune cell type
transfer from reference dataset to query dataset. Here, we used 17
SEs as reference dataset to train a REACTOME pathway masked
TOSICA model and applied the model to predict the cell type of
each cell in the disease datasets.

Delayed age-up and age-down cell types
For PLSR-based procedures, the predict cell type compositions at
110 years were generated by calculating the solution of the reversed
PLSR clock models at 110 years.
½Pre compositions�Fn�1 ¼ 110� ½PLS1þ PLS2�� 1

1�n, where n is the
29 cell types used in the model. For LR model–based procedures,
the delayed age-up and delayed age-down cell types are identified
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by regressing the cell type compositions of each individual to age
using the function lm(Composition~Age) in R for each gene with
P < 0.05 (corrected by Benjamini-Hochberg adjustment). Then, the
predict gene expression levels at 110 years were considered as the
expected compositions, and z score of the expected value on the dis-
tribution of real composition levels in SCs was used to determine
whether the gene expression was significantly delayed with P <
0.05 (corrected by Benjamini-Hochberg adjustment).

Delayed age-up and age-down genes, Gene Ontology
terms, and TF enrichment analysis
For PLSR-based procedures, the predict gene expression
levels at 110 years were generated by calculating the solution
of the reversed PLSR clock models at 110 years.
½Pre expression levels�n�1 ¼ 110� ½PLS1þ PLS2�� 1

1�n, where n is
the genes with VIP > 1. For LR model–based procedures, the
delayed age-up and delayed age-down genes in each cell type are
identified by regressing the median gene expression levels of these
genes in each cell type of each individual to age using the function
lm(Expression~Age) in R for each gene with P < 0.05. Then, the
predict gene expression levels at 110y were considered as the expect-
ed expression, and z score of the expected value on the distribution
of real expression levels in SCs was used to determine whether the
gene expression was significantly delayed with P < 0.05.

Enriched KEGG pathway was determined for each group of cells
using R package clusterProfiler (47) with default parameters. Anno-
tation Dbi R package “org.Hs.eg.db” was used to map gene identi-
fiers. Terms enriched in at least two cell types were visualized with
the ggplot2 R package as dot plot. Metascape (http://metascape.org/
gp/index.html#/main/step1) was used for TF enrichment analysis.

Inflammatory score
For a given cell or cell subset X, the inflammatory score was com-
puted as the sum of all unique molecular identifier (UMI) for all the
genes of “HALLMARK_INFLAMMATORY_RESPONSE” label
from MsigDB (48), expressed in X, divided by the sum of all UMI
expressed by X (49).

Cell-cell communication analysis
Cell-cell communication was predicted based on the scRNA-seq
data by using CellPhoneDB software (version 1.1.0) (28). For each
individual, only receptors and ligands expressed in at least 10% of
cells of a given type were further analyzed. The significance of age-
related difference was determined by RCC. The delayed age-up and
down pairs were determined as delayed genes based on average ex-
pression of each ligand-receptor pair across different cell types, and
only the top 100 pairs were used for visualization by LRPlot func-
tion from R package iTalk (50).

Age correction of AgeDiff and predicted age
To study chronological age-independent associations of AgeDiff
(the difference between predicted and actual age based on PLS/
EN model), we corrected AgeDiff for age by fitting to a polynomial
model to age as follows, with span 0.5 and degree 2:

AgeDiff ¼ PredictedAge � Age

cAgeDiff ¼ AgeDiff � loessðAgeDiff ≏ AgeÞ

The following formula is used to correct the predicted age for the
bias against age:

cPredictedAge ¼ PredictedAge � loessðAgeDiff ≏ AgeÞ

BN inference
We used the WinMine package (https://www.microsoft.com/en-us/
research/publication/the-winmine-toolkit-2) to calculate joint con-
ditional probability and build the preliminary potential BNs. The
BN analysis method is as described previously (51). Here, BN is in-
ferred on the mean ribosome protein gene expression level [derived
from scanpy.pp.calculate_qc_metrics() function], inflammation
score, age, and age-corrected AgeDiff of each single cell. To avoid
any signal loss by batch effect correction among four different data-
sets, the precorrection SE gene counts given by SCANPY were used.
Only edges with PCC slope P < 0.05 are kept.

Translational inhibition assay
CHX (100 μg/ml final concentration) or equal volume of vehicle
solvent (DMSO) was added to the THP-1 and human blood
primary monocyte cells 15, 30, 60, 180, and 360 min before harvest-
ing. Total RNA was extracted from cells using TRIzol Universal
reagent (Tiangen, Beijing) according to the manufacturer’s proto-
col. cDNA was synthesized using HiScript III RT SuperMix for
qPCR (+gDNA wiper) (Vazyme, Nanjing), gene expression level
was quantified by reverse transcription polymerase chain reaction
(RT-PCR) using ChamQ Universal SYBR qPCR Master Mix
(Vazyme, Nanjing), and relative gene expression levels were calcu-
lated using the 2−△△Ct method. Glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) was used as the endogenous control. The
following primers were used for the quantitative PCR: GAPDH,
5′-TTGAGGTCAATGAAGGGGTC-3′ (forward) and 5′-GAAGG
TGAAGGTCGGAGTCA-3′ (reverse); IL-6, 5′-ACTCACCTCTT
CAGAACGAATTG-3′ (forward) and 5′-CCATCTTTGGAA
GGTTCAGGTTG-3′ (reverse); IL-8, 5′-GTTTTTGAAGAGGGCT
GAGAATTC-3′ (forward) and 5′-CCCTACAACAGACCCACA
CAATAC-3′ (reverse).

Supplementary Materials
This PDF file includes:
Figs. S1 to S9
Legends for tables S1 to S6

Other Supplementary Material for this
manuscript includes the following:
Data files S1 to S6
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